Extremal Problems for Families of Subsets

Gyula O.H. Katona

MTA Rényi Institute

Let $[n] = \{1, 2, ..., n\}$ be our underlying set and let $\binom{[n]}{k}$ denote the family of its k-element subsets. We will consider families $\mathcal{F} \subset 2^{[n]}$ of subsets of [n]. If all of these subsets have sizes k then we call it a k-uniform family, otherwise it is non-uniform. The main goal of our investigations is to find the maximum of $|\mathcal{F}|$ under some conditions supposed on \mathcal{F} . The conditions are mostly given in the form that certain configurations of subsets are forbidden in \mathcal{F} .

The first such theorem was found by Sperner in 1928. He proved that the maximum of $|\mathcal{F}|$ is $\binom{n}{\lfloor n/2 \rfloor}$ under the condition that $|\mathcal{F}|$ contains no pair of members F, G such that $F \subset G$. (Such families will be called *Sperner families* in what follows.) The next results were found on *intersecting families*, containing no pair of members F, G such that $F \cap G = \emptyset$. Erdős, Ko and Rado (1961) made the observation that the largest size of an intersecting family is 2^{n-1} . A more difficult result in the same paper says that the maximum size of an intersecting k-uniform family is $\binom{n-1}{k-1}$, supposing $k \leq n/2$.

The family \mathcal{F} is called t-intersecting if $|F \cap G| \geq t$ holds for any two members $F, G \in \mathcal{F}$. The largest t-intersecting families were determined in 1964. But the determination of the largest t-intersecting k-uniform families proved to be more difficult. This was a result of Ahlswede and Khachatrian in 1997. In the present lecture we will show more results and problems along these lines. A recently popular direction of this theory is when a small poset P is fixed and the maximally sized family is sought under the condition that the family contains no members forming P with respect to the relation \subset . E.g. if P has only two comparable elements, this condition means that the family has no member containing another one as a subset: the condition of the Sperner theorem.

A "book proof" of Sperner theorem was given in 1966 by Lubell, but his

proof actually gave the following inequality:

$$\sum_{F \in \mathcal{F}} \frac{1}{\binom{n}{|F|}} \le 1.$$

The Sperner theorem is an immediate consequence. Let \mathcal{F}_i be the subfamily of \mathcal{F} consisting of its *i*-element members. Introducing the notation $f_i = f_i(\mathcal{F}) = |\mathcal{F}_i|$ the inequality above can be rewritten in the following form.

$$\sum_{i=0}^{n} \frac{f_i}{\binom{n}{i}} \le 1.$$

The vector $(f_0(\mathcal{F}), f_1(\mathcal{F}), \dots, f_n(\mathcal{F}))$ is called the *profile vector* of \mathcal{F} . Take the profile vectors of all Sperner families. They form a set of points with integer coordinates in the n+1-dimensional Euclidean space. Take its convex hall. It is easy to see from the inequality above that the extreme points of this convex hull are the zero vector and $(0,0,\dots,\binom{n}{i},\dots,0)$ $(0 \leq i \leq n)$.

We will survey known results for the extreme points of other classes of families and pose related open problems for largest families and extreme points.